Math 275D Lecture 4 Notes

Daniel Raban

October 4, 2019

1 Holder Continuity and Non-Lipschitz Continuity of Brownian Motion

1.1 Brownian Motion is Hölder Continuous on $\mathbb{Z}[\frac{1}{2}]$

Let's finish our proof of the following.

Lemma 1.1. B on $\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$ is uniformly continuous a.s.

Last time, we had a sequence of events H^N on which we had a condition bounding |B(x) - B(y)|.

Proof. In H^N , if $x, y \in \mathbb{Z}[\frac{1}{2}]$, and $|x - y| \leq 2^{-N}$, then $|B(x) - B(y)| \leq C2^{-\gamma N}$. We also know that $\mathbb{P}(H^N) \approx 1 - C2^{-\gamma N}$. Since $H^N = \bigcap_{m \geq N}^{\infty} G_m$, $H^N \subseteq H^{N+1}$. In H^N , for all $k \geq N$, if $|x - y| \in \mathbb{Z}[\frac{1}{2}]$ and $|x - y| \leq 2^{-k}$, then $|B(x) - B(y)| \leq 2^{-\gamma K}$. So in H^N , B(t) is a uniformly continuous function.

Now, since $H^N \subseteq H^{N+1}$, we get $\mathbb{P}(\bigcup_{N=1}^{\infty} H^N) = \lim_{N \to \infty} \mathbb{P}(H^N) = 1$. So with probability 1, B(t) is uniformly continuous on $\mathbb{Z}[\frac{1}{2}]$.

The proof actually shows the following:

Corollary 1.1. For any $\gamma < \frac{1}{2}$, B(t) on $\mathbb{Z}[\frac{1}{2}]$ is a γ -Hölder continuous function a.s.

Proof. In H^N , if $|x - y| \leq 2^{-N}$, then $|B(x) - B(y)| \leq |x - y|^{\gamma}C$. So in H^N for any $x, y \in [0, 1]$ with $x, y \in \mathbb{Z}[\frac{1}{2}]$, $|B(x) - B(y)| \leq |x - y|^{\gamma}C_N$. So in $\bigcup H_n$, B(t) is γ -Hölder continuous.

How did we find γ ? We had $\mathbb{E}[B(t)^4] \sim t^2$, so we chose $\gamma < 1/4$. We can do better by using the 2*p*-th moment: $\mathbb{E}[B(t)^{2p}] \sim t^p$, so we can pick $\gamma < (p-1)/(2p)$.

Now that we have a uniformly continuous B(t) on $\mathbb{Z}[\frac{1}{2}]$, we can extend it continuously to the entire positive real line.

1.2 Brownian motion is a.s. not Lipschitz anywhere

Lemma 1.2. B(t) is not Lipschitz at any point with probability 1.

Here is the idea: Split [0, 1] into n intervals of length 1/n. When the distance between two points is 1/n, then B(x) - B(y) should be about $1/\sqrt{n}$

Proof. Fix a constant C. Let $A_n := \{\exists x \in [0, 1] \text{ s.t. if } |y - x| \leq 3/n, \text{ then } |\frac{B(y) - B(x)}{y - x}| \leq C\}$. We want to show that $\mathbb{P}(\bigcap_n A_n) = 0$, and we have that $A_{n+1} \subseteq A_n$. So we want to prove that $\lim_n \mathbb{P}(A_n) = 0$. Define $A_n^{(x)}$ to be the event $\{|y - x| \leq 3/n, |\frac{B(y) - B(x)}{y - x}| \leq C\}$ In $A_n^{(x)}$, $|B(x+1/n) - B(x)| \leq C/n$; call this event $A_{n,1}^{(x)}$. Similarly, $|B(x+2/n) - B(x+1/n)| \leq 3C/n$; call this event $A_{n,2}^{(x)}$. Going to the left of x, we also get $|B(x - 1/n) - B(x)| \leq C/n$; call this event $A_{n,3}^{(x)}$. Since the $A_{n,i}^{(x)}$ are independent,

$$\mathbb{P}(A_n) \le \prod_{i=1}^3 \mathbb{P}(A_{n,i}^{(x)})$$

We have that $\mathbb{P}(A_{n,i}^{(x)}) \sim 1/\sqrt{n}$, so $\mathbb{P}(A_n^{(x)}) \leq (1/n)^{3/2}$.

Let's extend this to all of A_n , not just a specific point. Let $a_{k,n} = k/n$. Then

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_{n}^{(a_{n,k})}\right) \le n \mathbb{P}(A_{n}^{(a_{n,k})}) \sim \frac{1}{\sqrt{n}}.$$

The set of points where x is Lipschitz is open, so if B(t) is Lipschitz at x, then it is Lipschitz at $a_{n,k}$ for some n, k. So we can bound the probability of A_n ; the details are left as an exercise.¹

1.3 σ -fields for Brownian motion

Which σ -field do we use for Brownian motion? We have a few choices we can use:

$$\mathcal{F}_s^0 = \sigma(B(t), t \le s)$$
$$\mathcal{F}_s^+ = \bigcap_{t > s} \mathcal{F}_t^0$$

The second of these choices contains the first, and it contains events that allow you to "see into the future" a little bit. But we will see that the only extra events \mathcal{F}_s^+ contains are null sets. Here is an example of an event in \mathcal{F}_s^+ but not in \mathcal{F}_s^0 :

$$A = \left\{ \limsup_{t \to s^+} \frac{B(t) - B(s)}{t - s} \ge \frac{1}{2} \right\}.$$

 $^{1}:($